Die Bedeutung des "Wurzelzeichens"
Das Rückgängigmachen von Rechenoperationen
Jede der 4 Rechenanweisungen (Rechenoperationen) Addition, Subtraktion, Multiplikation und Division kann man mit der entsprechenden Gegenrechnung (Gegenoperation) rückgängig machen.
Die Gegenoperation der Addition ist die Subtraktion - und umgekehrt
Die Gegenoperation der Multiplikation ist die Division - und umgekehrt
Die Gegenoperation des Potenzierens ist das Radizieren (Wurzel ziehen) - und umgekehrt
Das Potenzieren einer Zahl mit dem Exponenten 2 nennt man "Quadrieren" : 3² =9. Dadurch erhält man die Quadratzahl von 3.
Die Gegenrechnung zum Quadrieren ist die Suche nach einer Zahl, die quadriert 9 ergibt. Dieses Verfahren nennt man "Radizieren" (Wurzel ziehen).
Dazu verwendet man das Wurzelzeichen. Die Zahl unter dem Wurzelzeichen nennt man Radikand. Die Zahl über dem Wurzelzeichen den Wurzelexponent.
Beachte
Bei Quadratwurzeln wird der Wurzelexponent weggelassen.
Der Radikand kann nicht negativ sein, da es keine Zahl gibt, die mit sich selbst mulltipliziert,ein negatives Ergebnis hat.
Die Wurzel aus Null ist Null, da 0 · 0 = 0
Definition: Die Wurzel von 9 ist die nichtnegative Lösung der Gleichung x² = 9.
Diese Definition ist nötig, da die Gleichung x² = 9 zwei Lösungen hat:
x1 = 3 denn 3 · 3 = 9 und x2 = -3 denn (-3) · (-3) = 9
Bei den folgenden Beispielen geht es um Wurzeln, daher wird auf die zusätzliche Darstellung der zweiten Lösung verzichtet.
Bsp: Die Quadratwurzel aus 9 ist 3
Bsp: Die 3. Wurzel aus 8 ist 2
Bsp: Die 7-te Wurzel aus 128 = 2
Weiteres Material zum Download
Zu diesem Thema möchte ich weitere Informationen Das Wurzelzeichen und seine Bedeutung
Ich möchte zu den Inhalten dieser Seite Übungen machen Gegenoperation
Ich möchte mir dazu ein Arbeitsblat mit Lösungen ausdrucken Arbeitsblatt 1