Berechnung von P

1. Darstellung von Anteilen

Beispiel 1: Anteile von 1 Meter


Du kennst inzwischen drei Möglichkeiten Anteile darzustellen:

1. Als Prozentanteil 40% von 1m

2. Als Bruchteil 40/100 m= 4/10 m = 2/5 m

3. In Dezimalschreibweise 0,40 m

Teile von 1 m

 

2. Die Berechnung von Anteilen


Somit stehen dir auch für die Berechnung drei Wege zur Verfügung.

Beispiel 2: Anteile von 15 €


a) Bruchrechnung


Beim Bruchrechnen berechnet man Bruchteile von Größen mit Hilfe der Multiplikation. Das Wort "von" im Text wird zum Rechenzeichen "mal" in der Rechnung.
Bsp.: 2/5 von 15€= 2/5 * 15 € = 6 €

b) Prozentrechnung mit Hundertstelbrüchen


Beim Prozentrechnen verwendet man nur Hundertstelbrüche. 2/5 = 40/100. Der Rechenweg bleibt der gleiche.
Bsp.: 40% von 15 € = 40/100 * 15 € = 6 €

c) Prozentrechnung mit Dezimalzahlen / Prozenfaktoren


Die Tatsache, dass man jeden Hundertstelbruch im Kopf problemlos in eine Dezimalzahl umwandeln kann, vereinfacht die Rechnung mit dem Taschenrechner.
Bsp.: 40% von 15 € = 0,4 * 15 € = 6 €

Der Zusammenhang von Bruchzahl - Prozentsatz - Dezimalzahl (Prozentfaktor f)

 

Bruchzahl 1
100
5
100
10
100
25
100
40
100
Prozentsatz p 1 % 5 % 10% 25% 40%
Dezimalzahl/Prozentfaktor 0,01 0,05 0,1 0,25 0,4

 

Beispiel 3 : 40% "von" 3m


Hier nochmal die 3 Möglichkeiten 40% von 3 m zu berechnen. 40% sind 40/100 oder gekürzt 2/5. Das Wort "von" wird in der Rechnung zu einer Multiplikation " * "

1. Man berechnet entweder 2/5 von 3m

2. oder 40/100 von 3m

3. oder 0,4 * 3m

Drei Rechenwege

Berechnung des Prozentwertes P mit dem Prozentfaktor f

Beispiel 4:

Um 4% von 150 @ mit dem Taschenrechner zu berechnen benötigt man :

  • Eine Vorüberlegung: Die Umrechnung des Prozentsatzes in eine Dezimalzahl ( Bsp. p = 4% >>> f = 0,04)
Der Prozentfaktor f
  • Die Multiplikation der Dezimalzahl f mit dem Grundwert G
Berechnung von P

Verwendet man bei der Berechnung des Prozentwertes den Prozentfaktor f, kann man den Prozentwert P durch eine einfache Multiplikation berechnen.

Beispiel

4% von 150 € = 0,04 * 150 = 6,00 €

Berechne die fehlenden Prozentwerte . Kontrolliere deine Lösungen mit dem Applet.

Grundwert G 150 @ 250 @ 300 @ 400 @ 800 @ 900 @
Prozentsatz p 4 % 4 % 15 % 15 % 60 % 60 %
Prozentwert P            

 

Das Kreis- und Streifendiagramm dienen zur Veranschaulichung und Kontrolle der Lösungen


Du kannst mit den beiden Schiebereglern den Grundwert G und den Prozentsatz p so ändern, dass er mit den Tabellenwerten übereinstimmt. Das Laden des Applets kann etwas dauern.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (( Click here to install Java now) )